\qquad
1.2/1.4 Determining the Number of Elements in Sets

There are two ways to determine the number of elements present:

- Figure it out from a Venn Diagram
- Use a Formula

Either of these methods is acceptable, and you should use the one that you are most comfortable with.

Notation: Suppose we want to determine the number of elements in Set A. We would write this as $n(A)$. If we wanted to determine the number of elements in the union of Sets A and B, we would write this as $n(A \cup B)$.

Example 1
Consider a universal set of all integers from -3 to 3 . Set A is the set of non-negative integers and set B is the set of integers divisible by 2 .
(A) List out the elements found in each set.

$$
u=\{-3,-2,-1,0,1,2,3\}
$$

$$
\begin{aligned}
& A=\{0,1,2,3\} \\
& B=\{-2,0,2\}
\end{aligned}
$$

(B) Create a Venn Diagram and use it to determine $n(A \backslash B)$.

(C) Write a formula to represent $n(A \backslash B)$, and use it to calculate $n(A \backslash B)$.

$$
n(A \backslash B)=n(A)-n(A \cap B)
$$

Principle of Inclusion and Exclusion
This principle is used to determine the number of elements in the union of sets.
Example 2
Set A has elements $\{2,3,6,8,9\}$
Set B has elements $\{4,5,6,7,9\}$
(A) Draw a Venn Diagram representing the sets.

(B) Determine $n(A \cup B)$.

$$
n(A \cup B)=8
$$

(C) Determine the value of $n(\mathrm{~A})+n(\mathrm{~B})$.

$$
\begin{array}{ll}
n(A)=5 & n(A)+n(B)=10 \\
n(B)=5 &
\end{array}
$$

(D) Is the value of $n(\mathrm{~A})+n(\mathrm{~B})$ equal to $n(\mathrm{~A} \cup \mathrm{~B})$? Explain.
No. we need to subtract the ourklap.

When calculating the number of elements in the union of two sets we can use the formula:

$$
n(\mathrm{~A} \cup \mathrm{~B})=n(\mathrm{~A})+n(\mathrm{~B})-n(\mathrm{~A} \cap \mathrm{~B})
$$

This is called the Principle of Inclusion and Exclusion. What is the value of $n(A \cap B)$ if Sets A and B are disjoint?

Important Note: When asked to calculate the number of elements in the union of two sets, you can use either a Venn Diagram or the formula for the Principle of Inclusion and Exclusion. You do not need to know how to do both. Use the method you are most comfortable with!

Example 3

Bradley does a survey of 34 people to find out how many people go to a gym each week and what type (s) of training they do. He learned that each week, 16 people do weight training (W), 21 people do cardio training (C), and 9 people do both types of training. 6 people do not go to the gym.
(A) Draw a Venn Diagram representing the situation;

(B) Determine $n(\mathrm{~W})$.

$$
n(w)=7+9=16
$$

(C) Determine $n(C)$.

$$
n(c)=9+12=21
$$

(D) Determine $n(\mathrm{~W} \backslash \mathrm{C})$.

$$
n(\omega x)=7
$$

(E) Determine $n(\mathrm{~W} \cup \mathrm{C})$.

$$
n(\omega \cup c)=7+9+12=28
$$

(F) Determine $n(W \cap C)$.

$$
n(\omega n c)=9
$$

Textbook Questions: page 20-21 \#1, 2, 3, 4, 5

