2.3C Permutation Problems with Repetition of Elements Allowed

Review of Permutations Problems

Summary - Permutation Problems Two Methods

- Draw blanks for each element and write in the number of possibilities for each.
- Use formulas.

Formulas (if repetition is not permitted):

1. If ALL the available elements are being used:
2. If NOT all of the elements are being used:

$$
P_{r}=\frac{n}{(n-r)^{\prime}}
$$

Rules
If the repetition of elements is permitted:

- Use the Fundamental Counting Principle

If the repetition of elements is not permitted:

- Use the permutation formula ${ }_{n} P_{r}=\frac{n!}{(n-r)!}$

Example 1:
A social insurance number (SIN) in Canada consists of a nine digit number that uses the digits 0 to 9 . If there are no restrictions on the digits selected for each position in the number, how many SINs can be created if:
(A) No repetition of digits is permitted.

$$
\begin{aligned}
& \text { (A) No repetition of digits is permitted. } \\
& P=10 \times 9 \times 8 \times 2 \times 2 \times 3 \times 2=3628800 \\
& { }_{n} P_{r}={ }_{10} P_{9}=\frac{10!}{(10-9)!}=\frac{10!}{1!}=3628800
\end{aligned}
$$

$$
\begin{aligned}
& \text { (B) Repetition is permitted. } \\
& \begin{aligned}
P & =10 \times 10 \times 10 \times 10 \times 10 \times 10 \\
& =1,000,000,000
\end{aligned}
\end{aligned}
$$

$$
P=10^{9}=1,000,000,000
$$

Repetition Problems
When repetition of elements is permitted, we can calculate the number of permutations using the Fundamental Counting Principle, which essentially takes the following format:

$$
P=n^{r}
$$

Example 2:
Suppose we want to create a four digit PIN using the digits 0-6. How many different PINs can be generated if:
(A) repetition of digits is not permitted.

$$
\begin{aligned}
& P=7 \times 6 \times 5 \times 4=840 \\
& \text { or } 7^{P_{4}}=\frac{7!}{1}=\frac{7!}{1}=840 \\
& \text { (B) repetition of digits is permitted. } \\
& P=7^{4}=2401 \text { or } P=7 \times 7 \times 7 \times 7=2401
\end{aligned}
$$

Examle2:
Consider the arrangement of a 5-digit password if only the digits 0-9 can be used.
(A) Is the order of the digits in a password important? Explain.
Yes. The wrong order dersn't work.
(B) How many arrangements are possible if repetition is allowed?

$$
\begin{aligned}
& P=\frac{10}{P} \times 10 \times 10 \times 10 \times 10=100,000 \\
& \text { Or } P=10^{5}=100,000
\end{aligned}
$$

(C) How many arrangements are possible if repetition is not allowed?

$$
\begin{aligned}
& P=10 \times 9 \times 8 \times I \times 6=30240 \\
& { }_{10} P_{5}=30240
\end{aligned}
$$

(D) Do the number of choices stay the same if repetition is allowed?
No.
(E) In which case is there a greater number of permutations possible?
Repetition.

Example 3:
The code for a lock consists of three numbers selected from $0,1,2,3$, with no repeats. For example, the code 121 would not be allowed but 302 would be allowed. Determine the number of possible codes.

$$
P=4 \times 3 \times 2=24
$$

$$
\begin{aligned}
& n=4 \\
& r=3
\end{aligned}
$$

Example 4:
How many two digit numbers can be formed using the digits $1,2,3,4,5,6$ if repetition is allowed?

$$
P=6 \times \underline{6}=36
$$

Example 5:
How many arrangements of three letters can be formed using the letters of the word LOCKERS if repetition is not permitted?

$$
P=7 \times \underline{6} \times \underline{5}=210
$$

Example 6:
How many 3 letter arrangements can be formed using the letters $\mathrm{M}, \mathrm{A}, \mathrm{T}$ allowing for repetition of the letters?

Textbook Questions: page 94; \#13, 14

