2.3D2 Solving Permutation Equations for n

Permutation Problems Involving the Terms "at least" or "at most"
Example 1:
To open the garage door of Leah's house, she uses a keypad containing the digits 0 through 9. The password must be at least a 4 digit code to a maximum of 6 digits, and each digit can only be used once in the code. How many different codes are possible?
at last four: 4 or 5 or 6

$$
\begin{gathered}
P(4)=10 \times 9 x^{\gamma} \times z=5040 \\
+ \\
\text { or }
\end{gathered}
$$

$$
P(5)=10 \times \underline{9} \times \underline{8} \times \underline{7} \times \underline{6}=30240
$$

$$
P(6)=10 \times 9 \times 8 \times 7 \times \underline{6} \times 5=\frac{151200}{186480}
$$

Example 2:
Tiffany needs to create a password for a social networking web site she registered with. The password can use any digits from 0 to 9 . A password must be at least 5 characters to a maximum of 7 characters, and each character can be used only once in the password.
(A) What is the total number of characters that Tiffany has to choose from?

$$
10
$$

(B) How many different passwords are possible?

$$
P(6)=10 \times 9 \times 8 \times 7 \times 6 \times 5=151200
$$

$$
P(7)=\underline{0 r} \times \underline{10} \times \underline{7 \times 6 \times 5 \times 4=\frac{604800}{786240}}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { at last } 5 / a t \text { most } 7 \\
5 \text { or } 6 \text { or } 7
\end{array} \\
& \begin{array}{c}
P(5)=10 \times 2 \times \underline{8} \times \underline{x}=\frac{30240}{\text { on }}+
\end{array}
\end{aligned}
$$

