2.6A Introduction to Combinations

Permutations vs. Combinations
Permutation: an arrangement of objects in which order matters
Combination: is a grouping of objects where order does not matter
Example 1:
Identify each of the following as a permutation or a combination problem.
(A) "My fruit salad contains apples, grapes and strawberries." Whether it is a combination of "strawberries, grapes and apples" or "grapes, apples and strawberries", it is the same fruit salad.
Order does not matter. Combination.
(B) "The passcode to my iPhone is 1786 ". The order 6871 or 7618 would not work. It has to be exactly 1786.
Under does natter. Permutation.

Example 2:
An assignment consists of three questions, A, B, C, and students are required to attempt two.
(A) If order matters, determine the number of permutations.

$$
\begin{array}{lll}
A B & A C & B C \\
B A & C A & C B
\end{array}
$$

(B) If order does NOT matter, determine the number of combinations.

$$
\begin{gathered}
A B=B A \quad A C=C A \quad B C=C B \\
(1) \\
C=3
\end{gathered} \text { Combinations will always }
$$

Example 3:

In a lottery, six numbers from 1 to 49 are selected, hence Lotto $6 / 49$. A winning ticket must contain those same six numbers.
(A) If order matters, determine the number of permutations.

$$
\begin{aligned}
& n=49 \\
& 49 P_{6}=49.48 .4746 .45 .44 \\
& r=6 \\
& =10,068,347,500
\end{aligned}
$$

(B) If order does NOT matter. In other words, as long as you have the same six numbers, but they can be arranged in any order. Determine the number of combinations.

Summary

The number of combinations will be less than the number of permutations since combinations eliminate the effect of groupings containing the same elements arranged in a different order. For example, $A B$ and $B A$ would count as two permutations but only as one combination.

We calculate the number of combinations by dividing the number of permutations by the number of ways we can arrange the elements that are being used or r !. This will eliminate the effect of groupings that have the exact same elements, just written in a different order.

Formula for Combinations

$$
{ }_{n} C_{r}=\frac{{ }_{n} P_{r}}{r!}
$$

Since ${ }_{n} P_{r}=\frac{n!}{(n-r)!}$,

$$
{ }_{n} C_{r}=\frac{\frac{n!}{(n-r)!}}{r!}
$$

$$
\begin{aligned}
& { }_{n} C_{r}=\frac{n!}{(n-r)!} \cdot \frac{1}{r!} \\
& { }_{n} C_{r}=\frac{n!}{r!(n-r)!}
\end{aligned}
$$

Different Notation:
${ }_{n} C_{r}$, can also be represented by the notation $\binom{n}{r}$ and for both we say, " n choose r ".
Example 4:
Determine the number of different three person teams that can be formed a total of nine volunteers.

$$
\begin{gathered}
\text { n } \\
r=3 \\
r=3 \\
\begin{array}{c}
n=9 \\
\text { or }
\end{array}
\end{gathered} q_{3}=\frac{9!}{3!(-3)!}=\frac{9!}{3!6!}=84
$$

$$
P=9 \times 8 \times 7=504
$$

$$
C=\frac{504}{3!}=84
$$

Example 5:
A restaurant serves 10 flavours of ice cream. Danielle has ordered a large sundae with three scoops. How many ice cream combinations does Danielle have to choose from, if she wants a each scoop to be a different flavour.

$$
\begin{array}{ll}
\begin{array}{l}
n=10 \\
r=3
\end{array} & 10 c_{3}=\frac{10!}{3!(10-3)!}=\frac{10!}{3!7!}=120 \\
& P=\frac{10}{} \times 9 \times 8=720 \\
& c=\frac{720}{3!}=120
\end{array}
$$

Example 6:
There are 9 dots randomly placed on a circle. How many triangles can be formed within the circle?

Example 7:
Tanya is the coach of a Pole Push team that consists of nine players: 5 male and 4 female. In each competition, teams of four complete against each other to push competitors out of a circle. The team that is successful wins.
(A) How many different four person teams does Tanya have to choose from for an all male competition?

$$
\begin{aligned}
& n=5 \\
& r=4
\end{aligned} \quad\binom{5}{4}=5 C_{4}=\frac{5!}{4!(5-4)!}=\frac{5!}{4!1!}=5
$$

(B) How many different four person teams does Tanya have to choose from, with two males and two females, for a mixed competition?

$$
\text { 2 males: }{ }_{5} C_{2} \quad 2 \text { females: }{ }_{4} C_{2}
$$

Combination Problems Involving Conditions/Cases
Example 7:
A planning committee is to be formed for a school-wide Earth Day program. There are 13 volunteers: 8 teachers and 5 students. In how many different ways can the principal choose a 4 - person committee that has at least 1 teacher?
at least 1: lar 2 or 3 or 4
1 teacher and 3stdats: $8 C_{1} x_{5} C_{3}=8 \times 10=80$
2 teachers and 2 student: $8_{2}{ }_{2}{ }_{5} C_{2}=28 \times 10=280$ or
3 teachers and Istrdat: ${ }_{8} C_{3} x_{5} C_{1}=56 \times 5=280$

Example 8:
The student council decides to form a subcommittee of 5 members to plan their Christmas Concert. There are a total of 11 student members: 5 males and 6 females.
(A) Determine how many different lays the subcommittee can consist of exactly three females.

$$
\text { Sfemales, } 2 m a l e s
$$

$$
C_{T}=20 \times 10=200
$$

(B) Determine how many different ways the subcommittee can consist of at least three females. at least 3 females: 3 or 4 or 5
$3 f$ and $2 \mathrm{~m}{ }_{6} C_{3}{ }^{x}{ }_{5} C_{2}=20 \times 10=200$
or $+$
4 F and $\mathrm{Im}{ }_{6} \mathrm{C}_{4} \times{ }_{5} \mathrm{C}_{1}=15 \times 5=75$
or
$5 F$ and $0 m \quad{ }_{6} C_{5} \times 5 C_{0}=6 \times 1=6$ $c=281$
(C) Determine how many different ways the subcommittee can consist of at least one female.
Weill use information obtained in (B).

$$
\begin{aligned}
& \text { If and } 4_{m}={ }_{6} c_{1} \times{ }_{5} c_{4}=6 \times 5=30 \\
& 2 f \text { and } 3_{m}={ }_{6} C_{2} \times{ }_{5} c_{3}=15 \times 10=\frac{150}{180} \\
&+\frac{281}{461}(\text { from } 15)
\end{aligned}
$$

Your turn:

1. From a standard deck of 52 cards, how many 5 -card hands have:
(A) at least three red cards 3 or 4 or 5

Bred and 2 black: ${ }_{26} C_{3} \times{ }_{26} C_{2}=2600 \times 325=845000$
4 red and I black: ${ }_{26} C_{4} \times{ }_{26}{ }^{C}$, $=14950 \times 26=388700$
5 ied and oblack ${ }_{26} C_{5} \times{ }_{26} C_{0}=65780 \times 1=65780$

$$
C_{T}=1299480
$$

(B) at least three face cards - Jack, King, or Queen 12 face cords

3 or 4 or 5
3 face and 2 non-fice ${ }_{12} C_{3} \times{ }_{40} C_{2}=220 \times 780=171600$
4 fire and inon-fice $12 C_{4} \times{ }_{40} C_{1}=495 \times 40=19800$
5 face and O non-fuce ${ }_{12} C_{5} \times{ }_{40} C_{0}=772 \times 1=\frac{79}{2}$
(C) at most 2 aces : 4 aces

0 or 1 or 2

$$
19 \overline{192192}
$$

0 ares and 5 nonuser $4^{C} C_{0} X{ }_{48} C_{5}=1712304$
1 ace and 4 nonceres ${ }_{4} C_{1} \times{ }_{4 F^{C}} C_{4}=778320$
2 aces and 3 nun-nces $4^{C_{2}} \times{ }_{4}{ }^{c} 3=103776$
(D) no spades 13 spades, 34 non-spados $T \overline{2594400}$

Ospades and 5 nonspades

$$
{ }_{13}{ }^{C_{0}} \times{ }_{39}{ }_{5}{ }_{5}=1 \times 575757=575757
$$

2. A volleyball coach decides to use a starting line-up of 1 setter, 2 midutte hinters, 2 power hitters and 1 right side hitter. She chooses 14 players for the team: 3 setters, 4 middle hitters, 4 power hitters, 3 right side hitters. How many possible starting line-ups are there?

$$
3_{1}^{c_{1}} x_{4} c_{2} x_{4} c_{2} x_{3} c_{1}
$$

$$
=3 \times 6 \times 6 \times 3=324
$$

Textbook Questions: page 118-119; \#1, 4, 5, 8, 10, 11, 13(A)

