Math 3201 4.1A Rational Expressions and Non-Permissible Values

A rational expression is any expression that can be written as the quotient of two polynomials, in the form $\frac{P(x)}{Q(x)}$ where $Q(x) \neq 0$.

A rational expression MUST have at least one variable in both the numerator and denominator. Otherwise, it is just an algebraic fraction.

Question: Why can't the denominator of the fraction equal 0?

Example 1:

Classify the following as being either rational expressions or algebraic fractions.

Non-Permissible Values of a Rational Expression

These are values of a variable that make the denominator equal zero. That is, when we substitute these values into the denominator, it becomes zero.

Example 2:

Steps for finding non-permissible values:

- Take the denominator and set it equal to zero.
- If the equation you come up with is linear, just solve for *x*.
- If the equation you come up with is quadratic, try just solving for x. If this is not possible, try factoring OR using the quadratic formula.

* What makes derominator 0?

Example 3:

Determine non-permissible values for each rational expression.

(A)
$$\frac{4x^2+8x}{4x}$$

(B) $\frac{4x}{4x} \neq 0$
(C) $\frac{4x^3}{4x^2}$
(E) $\frac{5x-2}{4x^2-16}$
(E) $\frac{5x-2}{4x^2-16}$
(E) $\frac{5x-2}{4x^2-16}$
(E) $\frac{5x-2}{4x^2-16}$
(E) $\frac{5x-2}{4x^2-16}$
(E) $\frac{2x+4}{4} = -2$
(E) $\frac{2x+4}{4} = -2$

Example 4:

Write a rational expression that has non-permissible values of:

Non-Permissible vs. Inadmissible Values for a Variable

Non-Permissible Values: values of a variable that make the denominator of a rational expression equal 0.

Inadmissible Values: values of a variable that do NOT make sense in the context of a given problem.

Example 5:

Suppose the expression $\frac{20}{x}$ is used to represent the time taken to complete a trip. $x \neq 0$ is a non-permissible value since it makes the denominator equal zero negative *x*-values are inadmissible since they result in negative time values which doesn't make sense!

Example 6:

Who is correct? Justify your answer by solving the problem.

Textbook Questions: page 223, 224 #3 find non-permissible values, 9 a), 10, 11 a), 16