4.1A Rational Expressions and Non-Permissible Values

A rational expression is any expression that can be written as the quotient of two polynomials, in the form $\frac{P(x)}{Q(x)}$ where $Q(x) \neq 0$.

A rational expression MUST have at least one variable in both the numerator and denominator. Otherwise, it is just an algebraic fraction.

Question: Why can't the denominator of the fraction equal 0 ?

Example 1:

Classify the following as being either rational expressions or algebraic fractions.

$$
\begin{array}{ccccc}
\frac{4}{5}, & \frac{2 x}{y}, & \frac{x^{2}-4}{x+1}, & \sqrt{5}, & 2 \pi, \\
r & \Gamma & \frac{\sqrt{x}}{2 y}, & \frac{x^{2}}{4} \\
& & &
\end{array}
$$

Non-Permissible Values of a Rational Expression

These are values of a variable that make the denominator equal zero. That is, when we substitute these values into the denominator, it becomes zero.

Example 2:

Explain why $x=2$ is a non-permissible value for $\frac{3 x}{x-2}$.

Steps for finding non-permissible values:

- Take the denominator and set it equal to zero.
- If the equation you come up with is linear, just solve for x.
- If the equation you come up with is quadratic, try just solving for x. If this is not possible, try factoring OR using the quadratic formula.
* What makes denominator o?

Example 3:
Determine non-permissible values for each rational expression.

$$
\begin{aligned}
& \text { (A) } \frac{4 x^{2}+8 x}{4 x} \\
& \frac{4 x}{4} \neq 0 \\
& x \neq 0
\end{aligned}
$$

(B) $\frac{x}{x+2}$
$x+2 \neq 0$

$$
x \neq-2
$$

$$
\text { (F) } \frac{-15}{x^{2}-5 x}
$$

$$
x(x-5) \neq 0
$$

$$
x \neq 0, x-5 \neq 0
$$

$$
x \neq 5
$$

$4-x \neq 0$
千 $\neq x$
$\times \underset{ }{\circ} \neq 4$

$$
\begin{array}{lll}
\text { (D) } \frac{x-1}{3 x^{2}-12} & \text { or } 3 x^{2}-12 \neq 0 \\
3\left(x^{2}-4\right) & \frac{3 x^{2}}{3} \neq \frac{12}{3} \text { why }-27 \\
3(x+2)(x-2) & \text { since }(-2)^{2}=4 \\
x+2 \neq 0, x-2 \neq 0 & \sqrt{x^{2}} \neq \sqrt{4} \text { then } \sqrt{4}=-2 \\
x \neq-2 \text { ix 申2 } & x \neq \pm 2 \text {-2 is second an root. }
\end{array}
$$

$$
\begin{aligned}
& \text { (G) } \frac{-5 x-2}{20 x^{2}+15 x} \\
& \begin{array}{l}
5 x(4 x+3)
\end{array} \neq 0 \\
& \frac{5 x \neq 0}{5} \neq \frac{4 x+3 \neq 0}{5} \quad \begin{array}{l}
\frac{4 x}{4} \neq-\frac{3}{4} \\
x \neq 0 \\
x
\end{array} \quad \neq-3 / 4
\end{aligned}
$$

$$
\left.\begin{array}{ll}
\text { (E) } \frac{5 x-2}{4 x^{2}-16} & 2 x-4 \neq 0 \\
=\frac{5 x-2}{(2 x+4)(2 x-4)} & \frac{2 x}{2} \neq \frac{4}{2} \\
2 x+4 \neq 0 \\
\frac{2 x}{2} \neq-\frac{4}{2}
\end{array}\right] \times-\frac{x}{-15} 0
$$

$$
2 \text { is principle rout. }
$$

Example 4:

Write a rational expression that has non-permissible values of:
(A) 2 and -4

$$
\begin{array}{cc}
x \neq 2, & x \neq-4 \\
(x-2) \neq 0, & (x+4) \neq 0
\end{array}
$$

$$
\frac{x}{(x-2)(x+4)}
$$

(B) $0,-2$ and 3
$(x) \neq 0, x \neq-2, \quad x \neq 3$ $(x+2) \neq 0 \quad(x-3) \neq 0$

$$
x(x+2)(x-3)
$$

(C) $\begin{aligned} & \frac{1}{4} \quad x \neq \frac{1}{4} \\ & 4 x \neq 1\end{aligned} y^{>(4 x-1) \neq 0}$

Non-Permissible vs. Inadmissible Values for a Variable

Non-Permissible Values: values of a variable that make the denominator of a rational expression equal 0 .

Inadmissible Values: values of a variable that do NOT make sense in the context of a given problem.

Example 5:

Suppose the expression $\frac{20}{x}$ is used to represent the time taken to complete a trip. $x \neq 0$ is a non-permissible value since it makes the denominator equal zero negative x-values are inadmissible since they result in negative time values which doesn't make sense!

Example 6:

What are the non-permissible values for $\frac{x+3}{x^{2}-16}$?

Who is correct? Justify your answer by solving the problem.

