4.3A Multiplying Rational Expressions

Steps:

- Where possible, factor the numerators and denominators of both expressions.
- Cancel common factors.
- Determine the restrictions by calculating the non-permissible values.
- State the simplified answer along with restrictions.

Example 1:
(A) $\frac{4 x^{2}-20 x}{18 x} \cdot\left(\frac{30 x}{x-5}\right)$

$$
\begin{aligned}
& \text { (B) } \frac{18 x^{3}}{5 x-15 x^{2}} \cdot \frac{1-9 x^{2}}{24 x^{2}} \\
= & \frac{18 x^{3}}{5(1-3 x)} \cdot \frac{(1+3 x)(1-3 x)}{24} \\
= & \frac{18(1+3 x)}{120} \\
= & \frac{3(1+3 x)}{20}, x \neq 0, \frac{1}{3}
\end{aligned}
$$

$$
x \neq 0
$$

$$
\sqrt{x^{2}} \neq \sqrt{0}
$$

$$
x \neq 0
$$

$$
\begin{gathered}
1-3 x \neq 0 \\
\frac{-3 x}{-3} \neq \frac{-1}{-3} \\
x \neq \frac{1}{3}
\end{gathered}
$$

Reversal of a Difference of Terms
A peculiar case happens when we get two terms reversed with a difference. Once we understand how it works we can use a shortcut from then on.

Example 2:
Simplify:
(A) $\frac{x-4}{4-x}$
(B) $\frac{-2 x(5-x)}{10 x^{2}(x-5)}$
(C) $\left.\frac{\left(x+3 x^{2}\right)}{(x-1)} \cdot \frac{\left(x-x^{2}\right.}{(1+3 x}\right)$
$=\frac{(x-4)}{-x+4}$

$$
=\frac{-2 x}{10 x^{2}}
$$

$=\frac{1}{-1}=-1, x \neq 4$

Textbook Questions: page 238, 239 \#1(a,c), 2(a,b), 3(a,d),4(a,c), 5(a), 6, 9

