4.3B Dividing Rational Expressions

Steps:

- Keep the first fraction the same and multiply by the reciprocal of the second fraction.
- Where possible, factor the numerators and denominators of both expressions.
- Cancel common factors.
- Determine the restrictions by calculating the non-permissible values.
- State the simplified answer along with restrictions.

Example 1:
Simplify the following and state restrictions.

$$
\begin{aligned}
& \text { (B) } \frac{\left(25-x^{2}\right)}{\left(3 x^{2}+6 x\right) \cdot} \cdot \frac{\left(\frac{7 x-35}{\left(x^{4}-16\right)}\right)}{} \\
& =\frac{\left(25-x^{2}\right)}{\left(3 x^{2}+6 x\right)} \cdot \frac{\left(x^{4}-16\right)}{(7 x-35)} \\
& =\frac{(5+x)(5-x)}{3 x(x+2)} \cdot \frac{\left(x^{2}+4\right)\left(x^{2}-4\right)}{7(x-5)} \\
& =-\frac{(5+x)(5-x)}{3 x(x+2)} \cdot \frac{\left(x^{2}+4\right)(x+2)(x-2)}{7(x-5)} \\
& =\frac{-(5+x)\left(x^{2}+4\right)(x-2)}{21 x}, x \neq 0,-2,2,5 \\
& x^{2}+4 \neq 0 \quad(\pm 2) \\
& \frac{x^{2} \neq-4}{\sqrt{x^{2}} \neq \sqrt{-4}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (c) } \frac{(x-5)}{\left(3 x^{2}-9 x\right)} \div \frac{5}{(6 x-18)} \\
& =\frac{(x-5)}{\left(3 x^{2}-9 x\right)} \cdot \frac{(6 x-18)}{5} \\
& =\frac{(x-5)}{3 x(x-3 x} \cdot \frac{6(x-3)}{5} \\
& =\frac{6(x-5)}{15 x} \\
& =\frac{2(x-5)}{5 x}, x \neq 0,3
\end{aligned}
$$

Textbook Questions: page 238-239 \#1(b,d), 2(c,d), 3(b,c), 4(b,d), 5(b), 7, 15(a)

