4.5A Rational Equations

Now that we've learned to work with rational expressions, we can now piece them together and work with rational equations. A rational equation involves one or more rational expression. For example:

$$
\frac{5}{x}=\frac{4}{x+2}
$$

There are several methods that can be used for solving rational equations:

1. Cross Multiplication: can ONLY be used when there is a single fraction on each side of the equation.
2. Common Denominator: get a common denominator for each fraction, then drop the denominator and solve the equation formed by the numerators.
3. Eliminate the Fractions: multiply each term by the LCD. This will result in the denominators of each fraction being cancelled out.

We can use the techniques of multiplying/dividing and adding/subtracting that we learned earlier in this chapter to solve an equation for a variable.

Of the three methods, the third one is probably the most general and efficient, so we will go with that one.

Eliminating the Fractions

Steps:

- Find the LCD.
- Multiply each term by the LCD.
- Cancel terms that are common to the numerator and denominator of each fraction.
- Solve the resulting equation. If the equation is quadratic, you might need to factor or use the quadratic formula.
- Check each solution to determine if there are any extraneous roots.

Example 1:
Solve the fol
(A)

$$
\frac{x}{10}=\frac{2}{5} \quad \text { LCA: } 10.5
$$

$$
\begin{aligned}
16 \cdot 5 \cdot \frac{x}{x+1} & =10 \cdot \frac{1}{8} \cdot \frac{2}{8} \\
5 \cdot x & =10 \cdot 2 \\
\frac{5 x}{5} & =\frac{20}{5}
\end{aligned} \quad \rightarrow x=4
$$

(B)

$$
\frac{3}{x}+\frac{7}{2 x}=\frac{1}{5} \quad \text { Lci: } 2 \cdot 5 x
$$

$$
2.5 \cdot x \cdot \frac{3}{x}+22.5 \cdot x \cdot \frac{7}{2 x}=2.8 x \cdot \frac{1}{45}
$$

$$
30+35=2 \cdot x
$$

$$
\frac{65}{2}=\frac{2 x}{2}
$$

$$
x=\frac{65}{2}=32.5, x \neq 0
$$

(C)

$$
\frac{x}{2}-\frac{(x+5)}{4}=\frac{4}{3} \quad C D: 2 \cdot 3 \cdot 4
$$

$2 \cdot 3 \cdot 4 \cdot \frac{x}{2 x}-2 \cdot 3 \cdot 4 \frac{(x+5)}{x}=2 \cdot 3 \cdot 4 \cdot \frac{4}{3}$
$12 x-6(x+5)=32$

$$
12 x-6(x+5)=32
$$

$$
12 x-6 x-30=32
$$

$6 x=32+30$
$\frac{6 x}{6}=\frac{62}{6}$

$$
x=\frac{31}{3}
$$

(D)

$$
\begin{gathered}
\text { 4. } \cdot 5 x \cdot \frac{1}{4}+4 \cdot 8 \cdot x \cdot \frac{1}{\frac{1}{4}+\frac{1}{5}=\frac{1}{x}}=4 \cdot 5 \cdot x \cdot \frac{1}{x} \\
5 x+4 x=20 \\
\frac{9 x}{9}=\frac{20}{9} \\
x=20 / 9 \quad 1 x \neq 0
\end{gathered}
$$

(E)

$$
\begin{gathered}
\frac{3}{x}-\frac{2}{4 x}=\frac{1}{12} \quad<c \Delta: 4 \cdot 12 \cdot x \\
4 \cdot 12 \cdot x \cdot \frac{3}{x}-x 12 \cdot x \cdot \frac{\partial}{4 x}=4 \cdot 18 \cdot x \cdot \frac{1}{12} \\
144-24=4 x \\
\frac{120}{4}=\frac{4 x}{4} \\
x=30 \quad, x \neq 0
\end{gathered}
$$

$$
\frac{(2 x+3)}{(x+5)}+\frac{1}{2}=\frac{(-14)}{2(x+5)}<\operatorname{cis}: 2(x+5)
$$

$2(x+5)$
$2 .(2 x+3)$

$$
\frac{(2 x+3)}{(x+5)}+2(x+5) \cdot \frac{1}{2}=\frac{2(x+5)(-14)}{2(x+5)}
$$

$$
4 x+6+x+5=-14
$$

$$
5 x=-14-6-5
$$

$$
\frac{5 x}{5}=-\frac{25}{5}
$$

$$
x=-5, x \neq-5
$$

No Solution.

$$
\begin{aligned}
& \text { (6) } \\
& 4(x+3) \frac{\left(2 x^{2}+1\right)}{(x+3)}=4(x+3) \frac{x}{4}+4(x+3) \frac{5}{(x+3)}=\frac{5}{4}+\frac{5}{x+3} \\
& 4\left(2 x^{2}+1\right)=x(x+3)+20 \\
& 8 x^{2}+4=x^{2}+3 x+20 \\
& 8 x^{2}-x^{2}-3 x+4-20=0 \\
& 7 x^{2}-3 x-16=0 \\
& x=\frac{-(-3) \pm \sqrt{(-3)^{2}-4(7)(-16)}}{2(7)} \\
& x=\frac{3 \pm \sqrt{457}}{14} \\
& x=\frac{3 \pm 21.4}{14} \\
& x=\frac{3+21.4}{14}, x=\frac{3-21.4}{14}, x \neq 3 \\
& x=1.7
\end{aligned} x=-1.3
$$

(H)

$$
\begin{aligned}
& \frac{18}{x(x-3)}=\frac{6}{(x-3)}-\frac{5}{x} \text { Las:x(x-3)} \\
& \frac{18}{x^{2}-3 x}=\frac{6}{x-3}-\frac{5}{x} \\
& 18=6 x-(x-3) \cdot 18 \\
& 18=x(x-3) \cdot \frac{6}{(x-3)}-x\left(x-\frac{15}{x-3) \cdot \frac{5}{x}}\right. \\
& 18=6 x-5 x+15 \\
& 18-15=6 x-5 x \\
& x=3, x \neq 0,3 \\
& \text { No solution. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (I) } \\
& \frac{2}{(a+2)}-\frac{\left(a^{2}+4\right)}{\left(a^{2}-4\right)}=\frac{a}{(2-a)} \\
& \frac{2}{(a+2)}-\frac{\left(a^{2}+4\right)}{(a+2)(a-2)}=\frac{-a \cos)(a+2)(a-2)}{(a-2)} \\
& \begin{aligned}
& \frac{a}{(2-a)} \\
= & \frac{a}{(-a+2)}
\end{aligned} \\
& =\frac{a}{-(a-2)} \\
& \frac{(a+2)(a-2) \cdot \frac{2}{(a+2)}-(a+2)(5-2)\left(a^{2}+4\right)}{(a+2)(5-2)}=\frac{(a+2)(c \cdot-2) \frac{(-a)}{\left(c_{x}-2\right)}}{}=\frac{-a}{(a-2)} \\
& 2(a-2)-\left(c^{2}+4\right)=(-a)(a+2) \\
& 2 a-4-a^{2}-4=-a^{2}-2 a \\
& 2 a+2 a-8=0 \\
& \frac{4 a}{4}=\frac{8}{4} \\
& a=2, \quad a \neq \pm 2 \\
& \text { No solution. }
\end{aligned}
$$

