5.2 Characteristics of the Equations of Polynomials

Reading the \boldsymbol{Y}-Intercept of a Function from the Equation

The y-intercept corresponds to the constant term in the equation. This applies to all types of polynomial functions.

$$
f(x)=-2 x^{\prime}-3
$$

The constant term in the equation is 3^{3} and the y-intercept of the graph is $\frac{3}{5}-3$

Recall from Math 1201, given $y=m x+b$, m is the slope of the line. $m=\frac{\text { rise }}{\text { run }}$. The further from 0 a slope is, the steeper it is on a graph. So for this example, slope $=m=$ -2

Determining the Maximum number of X-Intercepts of a Function from the Equation

The maximum number of x-intercepts for a function is equal to the degree of the function. For example, a linear function can have a maximum of $1 x$-intercept and the degree of a linear function is 1 . The example, above, shows that we have an x-intercept of $x=-\frac{3}{2}$ or -1.5 .

For quadratics, the degree is 2 , so the maximum number of x-intercepts is 2 . However, a quadratic can have less than two x-intercepts.

Thus, a quadratic can have 0,1 or $2 x$-intercepts. The degree tells us the maximum number of x-intercepts a function can have. Recall from Math 2201, the vertex (h, k) of a parabola is the maximum or minimum value.

If $f(x)=a x^{2}+b x+c$,

$$
h=-\frac{b}{2 a} \text { and } k=f(h)
$$

The range of quadratic is $\{y \mid y \geq k, y \in R\}, a>0$ and $\{y \mid y \leq k, y \in R\}, a<0$
We can also use a, h and k to write a quadratic function in vertex form:

$$
f(x)=a(x-h)^{2}+k
$$

Example 1:
(A)

$$
\begin{aligned}
& a=-3 \\
& h=\frac{-b}{2 a}=\frac{-(-12)}{2(-3)}=\frac{12}{-6}=-2 \\
& k=-3(-2)^{2}-12(-2)+7=19
\end{aligned}
$$

ii. What is the range?

$$
\text { Orate }(-2,19)
$$

$a<0 \backsim\{y \mid y \leqslant k, y \in R\} \therefore\{y \mid y \leq 19, y \in R\}$
(B)
i. What is $y=2 x^{2}-16 x-11$ in vertex form?

$$
\begin{aligned}
& a=2 \\
& h=-\frac{b}{2 a}=\frac{-(-16)}{2(2)}=\frac{16}{4}=4 \\
& k=2(4)^{2}-16(4)-11=-43
\end{aligned}
$$

$$
\begin{aligned}
y= & 2(x-4)^{2}-43 \\
& \text { vertex: }(4,-43)
\end{aligned}
$$

ii. What is the range?

Cubic functions have a degree of 3 , thus they have a maximum of $3 x$-intercepts. Below are examples of cubic functions having two turning points:

One x-intercept:

Two x-intercepts:

Three x-intercepts:

Thus, cubic functions having two turning points can have 1, 2 or $3 x$-intercepts.

A Special Case

Cubic functions that have no turning points will only have $1 x$-intercept.

Matching Equations and Graphs

Steps:

- Look at the degree of the equation to determine what type of function it is.
- Match the constant term in the equation with the y-intercept on the graph.
- Check the leading coefficient of the equation and match it up with the end behavior of the graph.

Example 2:

Match each graph with the correct polynomial function.

$$
\begin{aligned}
& \text { Justify your reasoning. } \\
& \text { Vi } g(x)=-2 x^{3}+4 x^{2}-2 x-2 \quad i j(x)=x^{2}-2 x-2 \quad \quad \operatorname{V} p(x)=x^{3}-2 x^{2}-x-2 \\
& \text { - iii } h(x)=-\frac{1}{2} x^{\prime}-3 \\
& \vee k(x)=x^{2}-2 x+1 \\
& \text { i } q(x)=-2 x-3
\end{aligned}
$$

i)

iii)

v)

ii)

iv)

vi)

Example 3:
Determine the following characteristics of each function using the equation:

- y-intercept
- end behavior
- domain
- range
- number of possible turning points
(A) $f(x)=3 x-5$
Y-int: -5
end behavior fall left/rise right Q III $\rightarrow Q I$ domain: $\{x \mid x \in \mathbb{R}\}$ turn points: 0
range: $\{y \mid y \in \mathbb{R}\}$
(B) $f(x)=-2 x^{2}-4 x+8$

Y-MA: 8 a b $<\cdots \downarrow$
end behavior: falls ieft/falls right Q III \rightarrow QUE

$$
\text { domain: }\{x \mid x \in R\}
$$

range: $h=\frac{-b}{2 a}=\frac{-(-4)}{2(-2)}=\frac{4}{-4}=-1$

$$
\{y: y \leq 10, y \in R\}
$$

$$
\begin{aligned}
& k=-2(-1)^{2}-4(-1)+8=10 \text { turning points: } 1 . \\
& f(x)=2 x^{3}+10 x^{2}-2 x-10
\end{aligned}
$$

(C) $f(x)=2 x^{3}+10 x^{2}-2 x-10$

Y-int: - 10
end behavior: $a^{\prime}>0$ falls left/rises right $Q_{\text {III }} \rightarrow Q_{I}$ domain: $\{x \mid x \in R\}$
range
turning pouts: 2 or 0

Example 4:

Sketch the graph of a possible polynomial function for each set of given characteristics.
(A) range: $\{y \mid y \geq-2, y \in \mathrm{R}\}$ y-intercept: 4
parabola
\cdot opens up

(B) range: : $\{y \mid y \in \mathrm{R}\}$

(C) two turning points negative leading coefficient
constant term -5

(D) degree 2
one turning point which is a minimum

Textbook Questions: page 287-289 \#1, 2, 3, 6, 7, 13

