Exponential Functions

Equations written in the form:

$$y = a(b)^x$$

where:

- b > 0 and $b \neq 1$
- a > 0 for the cases that we will study
- *x* is the exponent instead of the base, as it was for the other functions we looked at

We will now explore what the graphs of exponential functions look like, and examine some basic properties of the graphs. Consider the following graph, and use it complete the table that follows:

	$y = 2^x$	$y = 4^x$	$y = 6 (4)^x$
y-intercept	(5
number of <i>x</i> - intercepts	0	\bigcirc	Ó
end behavior	· increasing QI->QI	in reasing QTT -> QI	in(1ecsing QII-) QI
domain	SXIXERS	SXIXERS	Ex Ix ERE
range	ENINSO'REUS	EY1420,4ERZ	Fylibo, yerz

$y = \left(\frac{1}{2}\right)^{x}$ $y = \left(\frac{1}{2}\right)^{x}$ $y = \left(\frac{1}{2}\right)^{x}$ $y = \left(\frac{1}{2}\right)^{x}$ $y = \left(\frac{1}{4}\right)^{x}$				
	$y = \left(\frac{1}{2}\right)^x$	$y = \left(\frac{1}{4}\right)^x$	$y = 6 \left(\frac{1}{4}\right)^x$	
y-intercept	1	l	5	
number of <i>x</i> -intercepts	C	O	0	
end behavior	d (resiy QT-) QI	deriesing QII-> QI	trasy all-SUI	
domain	Fxlxerg	FXIKERZ	5x1xER3	
range	July >0, yerg	Ey1420,44RZ	Fylyso,yerg	

General Properties of $y = a(b)^x$

- no *x*-intercepts; one *y*-intercept
- exponential functions have a restricted range bounded by the *x*-axis but the domain consists of real numbers
- can be increasing or decreasing
- some exponential functions increase/decrease at a faster rate than others

Asymptotes

Notice that on each of our graphs, the exponential function got really close to the *x*-axis on one side, but never actually touched it. Thus, the *x*-axis is said to be an *asymptote* of the exponential function. More specifically, it is called a horizontal asymptote since it is a horizontal line. The *x*-axis has the equation y = 0, thus y = 0 is the asymptote of the exponential functions that we will study.

For each exponential function shown, identify the *y*-intercept from the graph, and state the value of a from the equation.

$$\gamma = 2^{\times} \longrightarrow \gamma = 1(2)^{\times} \gamma - int; a = 1$$

 $\gamma = 4^{\times} \longrightarrow \gamma = 1(4)^{\times} \gamma - int; a = 1$
 $\gamma = 5(4)^{\times} \longrightarrow \gamma - int; a = 5$

What is the relationship between the y-intercept and the value of a? \neg is the \neg -intercept.

Domain and Range for Exponential Functions

For each exponential function shown on the graph, identify the domain and range:

- Case 1: An increasing function; the curve extends from quadrant II to quadrant I.

Decreasing

Textbook Questions: page 337 #1, 2, 3