6.2 Relating the Characteristics of Exponential Functions to Equations

Exponential Functions

Equations written in the form:

$$
y=a(b)^{x}
$$

where:

- $b>0$ and $b \neq 1$
- $a>0$ for the cases that we will study
- x is the exponent instead of the base, as it was for the other functions we looked at

Impact of \boldsymbol{b} Value On the Graph

Notice that for each function shown, $\mathrm{b}>1$, and that each of the graphs is increasing as we move from left to right.
Larger by the stepper the graph to the right.

Notice that for each function shown, $0<b<1$, and that each of the graphs is decreasing as we move from left to right.

Smaller b, the stepper the graph to the left.

Summary of Rules for a and b values

For an exponential function of the form

$$
y=a(b)^{x}
$$

- a is the y-intercept on the graph
- if $b>1$, the graph will increase
- if $0<b<1$, the graph will decrease

Matching Equations With Graphs

To match exponential equations with graphs, we must look at the a value in the equation and match it with the y-intercept on the graph. We must also look at the b value and determine whether the function is increasing or decreasing.

Example 1:

Match each function with the corresponding graph below. Provide your reasoning.
i) $y=1(3)^{x}$
ii) $y=\frac{1}{3}(3)^{x}$
iii) $y=3\left(\frac{1}{3}\right)^{a}$
a b
c)

b)

d)

Example 2:

Complete the following table for the function $y=8\left(\frac{2}{3}\right)^{x}$

In Summary

Key Ideas

- In a table of values for an exponential function, there is a constant ratio between consecutive y-values when the x-values increase by the same amount. The value of this ratio is equal to the parameter b in the function

$$
y=a(b)^{x}, \text { where } b \neq 1
$$

- In an exponential function of the form $y=a(b)^{x}, a$ is a non-zero multiplier and b is the base (where $b>0$ and $b \neq 1$). The value of a is the y-intercept of the graph of the function.

Need to Know

- An exponential function is an increasing function if $a>0$ and $b>1$.
- An exponential function is a decreasing function if $a>0$ and $0<b<1$.
- Changing the parameters a and b in exponential functions of the form $y=a(b)^{x}$, where $a>0, b>0$, and $b \neq 1$, does not change the number of x-intercepts, the end behaviour, the domain, or the range of the function. These characteristics are identical in all exponential functions of this form.

Textbook Questions: page $347(\neq 2,3,4,6,7,9,10,11,12,13$

Homework

