7.1 Introduction to Logarithmic Functions

Inverse of a Function: this is obtained by switching the values of x and y. The graph of the inverse of a function is reflected in the line $y=x$.

Complete the table of values for the exponential function $y=10^{x}$ and its inverse $x=10^{y}$.

$$
y=10^{x}
$$

$$
x=10^{y}
$$

x	y
-2	0.01
-1	0.1
0	1
1	10
2	100

x	y
0.01	-2
0.1	-1
1	0
10	1
100	2

Graph both on the grid provided:

Complete the following:

1. What is the relationship between the graphs of $y=10^{x}$ and $x=10^{y}$? Think about both graphs in relation to the line $y=x$? Reflections of each other.
2. State the domain for each function.

Exponent: $\Delta:\{x \mid x \in R\}$
Inverse: $\lambda\{x \mid x>0, x \in R\}$
3. State the range for each function.

Exponent: $\{y \mid y>0, y \in R\}$
Inverse: $\{y / y \in R\}$
4. State the intercepts for each function.

$$
\begin{array}{ll}
Y=10^{x} & \text { no } x \text {-intercept, } y \text {-intercept: } 1 \\
X=10^{y} & x \text {-intercept: } 1, \text { no y-intercent }
\end{array}
$$

5. Describe the end behavior for each function.

$$
\begin{array}{cc}
y=10^{x} & \text { left: decreases slowly } \\
\text { right: increases }
\end{array} \quad Q \text { II } \rightarrow Q I
$$

$$
x=10^{y} \quad \text { left : decreases }
$$

right: increases slowly Q IV $\rightarrow Q_{I}$

The equation $y=10^{x}$ represents an exponential function. The equation $x=10^{y}$ represents the inverse of the exponential function.

Normally when we write an equation, we get " y " by itself, yet in the equation $x=10^{y}$, " x " is by itself instead. To get " y " by itself in this equation, we write it in a different form called logarithmic form.

The equation $x=10^{y}$ can also be written as:

$$
y=\log _{10} x
$$

This reads "log base 10 of x ", and it means: "What exponent would we have to raise 10 to in order to get x.

Note: The base of a logarithmic function can be some value other than 10 , but 10 is the most common value. When we use the log button on a calculator, it automatically assumes a base of 10 . Also, if we write a log equation without writing the base value: $y=\log x$ then it is automatically assumed that the base is 10 . That is:

$$
\log _{10} x=\log x
$$

In general, the inverse of the exponential function $y=a(b)^{x}$ can be written as $x=a(b)^{y}$, or in logarithmic form as:

$$
y=a \log _{b} x
$$

"Ben" and "Benny"

A simple way to remember how to convert from exponent form to logarithmic form is:

Comparing the Properties of Exponential and Logarithmic Functions

Examining the Impact of the " \boldsymbol{a} " value on a Logarithmic Function

Many logarithmic functions are written in the form $y=a \log _{10} x$. What impact does the value of " a " have on the appearance of the graph?

Consider the following graphs:
$y=\log x$
$a=1$

$y=4 \log x$
a

1. What is the impact on the graph of the function:
(A) if $a>0$? increasing
(B) if $a<0$?

2. Does a affect the x-coordinate or the y-coordinate? Is this a vertical transformation or a horizontal transformation?

3. Which point is easily identified from the graph?

$$
x-\operatorname{sit}: \quad x=1
$$

4. Which characteristics of the graphs of logarithmic functions differ from the characteristics of the graphs of exponential functions?
See previous table

Important Points:

- When $a>0$, the y-values increase as the x-values increase. This is an increasing function from Quadrant IV to Quadrant I.
- When $a<0, y$-values decrease as the x-values increase. This is a decreasing function from Quadrant I to Quadrant IV.
- Logarithmic functions do not have a y-intercept but do have a restricted domain, $x>0$.

Question 1:

(A) What is the domain of the logarithmic function $y=\log x$?
$D:\{x \mid x>0, x \in R\}$

$$
\log (-3)
$$

(B) Use your calculator to evaluate

$$
\begin{aligned}
& \log (-3)= \text { undefined } \\
& x>0 \quad \therefore \text { Cant take the log } \\
& \text { negative number. }
\end{aligned}
$$

(C) Use your calculator to evaluate $\log (0)$. What do you get? Explain why this is the case.

$$
\begin{aligned}
& \log (0)=\text { undefined } \\
& x>0 \quad \therefore \text { we cant take the log or } O .
\end{aligned}
$$

Natural Logarithms

Natural logarithms are special case of logs in which the base is " e ", where e is a constant, irrational number $e=2.718281828$...

The constant "e" can be used as the base in an exponential function to give $y=a(e)^{x}$. The inverse would be $x=a(e)^{y}$. We can write this in logarithmic form as

$$
y=a \log _{e} x \text { or } y=a \ln x
$$

The latter format is the standard one for writing a logarithm with base e and is called the natural logarithm.

Comparing the Graphs of $y=\log _{10} x$ and $y=\ln x$

$y=\log _{10} x$
$y=\ln x$

Notice that changing the base of the logarithm from 10 to e slightly changes some of the y-values. However, the properties of the graphs are the same.

Key Ideas

- A logarithmic function has the form $f(x)=a \log _{b} x$, where $b>0, b \neq 1$, and $a \neq 0$, and a and b are real numbers.
- All logarithmic functions of the form $f(x)=a \log x$ and $f(x)=a \ln x$ have these characteristics:

\boldsymbol{x}-Intercept	1
Number of \boldsymbol{y}-Intercepts	0
End Behaviour	The curve extends from quadrant IV to quadrant I or quadrant I to quadrant IV.
Domain	$\{x \mid x>0, x \in \mathrm{R}\}$
Range	$\{y \mid y \in \mathrm{R}\}$

- All logarithmic functions of the form $f(x)=a \log x$ and $f(x)=a \ln x$ have these unique characteristics:
- If $a>0$, the function increases.
- If $a<0$, the function decreases.

Need to Know

- The graph of a logarithmic function of the form
$f(x)=a \log x$ or $f(x)=a \ln x$ will look like one of the following cases:

Case 1: an increasing function, where $a>0$

- The graph of $y=\log x$ is a reflection of the graph of $y=10^{x}$ about the line $y=x$.

Case 2: a decreasing function, where $a<0$

- The graph of $y=\ln x$ is a reflection of the graph of $y=e^{x}$ about the line $y=x$.

Matching Exponential and Logarithmic Equations with Graphs

Example 1:

Which function matches each graph below? Provide your reasoning.
i) $y=5(2)^{x}$
ii) $y=2(0.1)^{x}$
iii) $y=6 \log x$
iv) $y=-2 \ln x$
a)

c)

b)

d)

