7.2B Problems Involving Logarithmic Scales

Case 1: pH of a Solution

The pH of a solution is determined using the equation $p(x)=-\log x$ where x is the concentration of hydrogen ions measured in moles per litre ($\mathrm{mol} / \mathrm{L}$). This scale ranges from 0 to 14 with the lower numbers being acidic and the higher numbers being basic. A value where the $\mathrm{pH}=7$ is considered neutral. The scale is a logarithmic scale with one unit of increase in pH resulting in a 10 fold decrease in acidity. Another way to consider this would be a one unit increase in pH results in a 10 fold increase in basicity.
Example 1:

of
(A) The hydrogen ion concentration, x, of a solution is $0.0001 \mathrm{~mol} / \mathrm{L}$. Calculate the pH of the solution.

$$
\begin{aligned}
& p(x)=-\log x \\
& x=0.0001 \\
& p(x)=-\log (0.0001) \\
& p H=4
\end{aligned}
$$

(B) Use the pH scale shown to calculate the hydrogen ion concentration of lemon juice.

$$
p H=2 \leftarrow p(x)
$$

$$
2=-\log x
$$

$$
\log x=-2
$$

(C) In terms of hydrogen ion concentration, how much more acidic is Solution A, with a pH of 1.6 , than Solution B , with a pH of 2.5 ? Round your answer to the nearest $10^{\text {th }}$.

$$
\begin{aligned}
& \text { Solution A } \\
& \text { pH =1.6 } \\
& 1.6=-\log x \\
& \log x=-1.6 \\
& 10^{-1.6}=x \\
& x=0.025(2 \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Solution B } \\
& p H=2.5 \\
& 2.5=-\log x \\
& \log x=-2.5 \\
& 10^{-2.5}=x \\
& x=0.003162 \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

$$
\frac{\text { concentration } A}{\text { concentration } B}=\frac{0.02512}{0.003162}=7.9
$$

A is 7.9 times more acidic than B.
Case 2: Magnitude of Earthquakes
The magnitude of an earthquake is measured on the Richter Scale. Magnitude refers to the amount of energy released during an earthquake.

The magnitude of an earthquake, y, can be determined using $y=\log x$, where x is the amplitude of the vibrations measured using a seismograph. An increase of one unit in magnitude results in a 10 fold increase in the amplitude. This topic lends itself to the incorporation of current events with the inclusion and comparison of a variety of earthquakes.

Example 2:
Determine the magnitude of an earthquake if the amplitude of vibrations, as measured by a seismograph, is 500.

$$
\begin{array}{ll}
x=500 & y=\log 500 \\
y=? & y=2.7 \longleftarrow \text { magnitude }
\end{array}
$$

Case 3: Decibel Scale for Sound Levels
Example 3:
Sound levels are measured in decibels using the function $\beta=10(\log I+12)$, where β is the sound level in decibels (dB) and I is the sound intensity measured in watts per metre squared $\left(\mathrm{W} / \mathrm{m}^{2}\right)$. What is the sound level, to the nearest decibel, of each sound?

$$
\begin{aligned}
& \text { (A) Rustle of leaves, if } I=1 \times 10^{-11} \mathrm{w} / \mathrm{m}^{2} \\
& \beta=10\left[\log \left(1 \times 10^{-11}\right)^{+12}\right] \\
& \beta=10(-11+12) \\
& \beta=10(1)
\end{aligned}
$$

(B) Vacuum cleaner, if $I=1 \times 10^{-4} \mathrm{~W} / \mathrm{m}^{2}$

$$
\left.\begin{array}{l}
\left.\begin{array}{l}
\text { Vacuum cleaner, if } I=1 \times 10^{-4} \mathrm{w} / \mathrm{m}^{2} \\
\beta=10\left[\log \left(1 \times 10^{-4}\right)+12\right.
\end{array}\right] \\
\beta=10(-4+12) \\
B=10(8)
\end{array}\right) \beta=80 d B
$$

(C) Rock band, if $I=0.01 \mathrm{~W} / \mathrm{m}^{2}$

$$
\begin{aligned}
& \beta=10[\log (0.01)+12] \\
& \beta=10(-2+12) \\
& \beta=10(10)
\end{aligned} \quad \Rightarrow \beta=100 d B
$$

$$
\begin{aligned}
& \text { (D) Jet Engine, if } I=100 \mathrm{w} / \mathrm{m}^{2} \\
& \beta=10[\log (100)+12] \\
& \beta=10(2+12) \\
& \beta=10(14)
\end{aligned} \quad \beta=140 \mathrm{~dB}
$$

Textbook Questions: page 437 \#14 (a, b, c), 15 (a, b, c), 16(a), 18(b, c, d), 19, 20

