7.3 Laws of Logarithms

Recall the Laws of Exponents from Math 9 and Math 1201:

$$
\text { Product: } a^{m} \times a^{n}=a^{m+n}
$$

Quotient: $a^{m} \div a^{n}=a^{m-n}$

$$
\text { Power of P Power: }\left(a^{m}\right)^{n}=a^{m \times n}
$$

Similarly, there are also Laws of Logarithms:
Product rule: $\quad \log _{b}(m \times n)=\log _{b} m+\log _{b}(n)$
Quotient rule: $\quad \log _{b}(m \div n)=\log _{b} m-\log _{b}(n)$
Power Law:

Change of Base Law:

$$
\log _{b} n=\frac{\log n}{\log b}
$$

These laws apply when.: $\quad b>0, m>0, n>0$ and $b \neq 1$, where b, m, and $n \in R$
Note: These laws also apply to natural logarithms, ln.

Verification of Rules of Logarithms
Product rule:

\[

\]

Quotient Rule:

$$
\begin{aligned}
& \log _{2}(256 \div 32)=\log _{2} 256-\log _{2} 32 \\
& y=\log _{2}(8) \\
& 2^{\prime \prime}=8 \\
& 2^{y}=2^{3} \\
& y=3 \\
& y=\log _{2} 256 \quad y=\log _{2} 32 \\
& 2^{\prime \prime}=256 \quad 2^{\prime \prime}=32 \\
& 2^{y}=2^{8} \quad 2^{y}=2^{5} \\
& y=8 \quad y=5 \\
& 8-5 \\
& =3
\end{aligned}
$$

Power Law:

$$
\begin{array}{l|l}
y=\log _{2} 4^{3 \log _{2} 4^{3}}=3 \log _{2} 4 & 3 \cdot\left(\log _{2} 4\right) \\
y=\log _{2} 64 & y=\log _{2} 4 \\
2^{y}=64 & 3(2) \\
=6 & 2^{\prime}=4 \\
2^{y}=2^{6} & 2^{\prime}=2^{2} \\
y=6 & y=2
\end{array}
$$

Examples 1:
Use the laws of logarithms to write the following as single logarithms, and then evaluate.
(A)

$$
\begin{array}{lr}
Y={ }^{\log _{2} 5+\log _{2} 6.4} \\
y=\log _{2}(5 \times 6.4) & \\
2^{Y}(32) & \text { or } Y=\log _{2}(32) \\
2^{Y}=32 & Y=\frac{\log 32}{\log 2} \\
2^{Y}=2^{5} & \\
y=5 & y=5
\end{array}
$$

(B)

$$
\begin{aligned}
& y=\log _{5}\left(\frac{\log _{5}^{100}}{4}\right) \\
& y=\log _{5}(25) \text { or } y=\log _{5} 25 \\
& 5^{y}=25 \\
& 5^{y}=5^{2} \\
& y=2 \quad=\frac{\log _{2} 25}{\log _{5}} \\
& y=2
\end{aligned}
$$

(C)

$$
\begin{array}{ll}
=5\left(y=\log _{3} 27\right) & \begin{array}{c}
\log _{3} \log _{3} 7^{5} \\
\text { or }
\end{array} \\
=5\left[\frac{\log 27}{\log 3}\right] \\
=5\left(3^{y}=27\right) \\
=5\left(3^{4}=3^{3}\right) & =5(3) \\
=5(3) \\
=15
\end{array}
$$

(D)

$$
\begin{array}{ll}
y=\log _{3}\left(18 \cdot \frac{3}{2}\right) \\
y=\log _{3} 27^{\log _{3} 18+\log _{3}\left(\frac{3}{2}\right)} \\
3^{y}=27 & \text { or } \\
3^{\prime}=3^{3} & y=\frac{\log 27}{\log ^{3}} \\
y=3 & y=3
\end{array}
$$

(E)

Example 2:
Identify any errors and write the correct solution:
Simplify: $\log _{5} 36+2 \log _{5} 3$
Response $\mathrm{A}: \log _{5} 36+\log _{5} 3^{2} \quad$ Response $\mathrm{B}: \log _{5} 36+\log _{5} 3^{2}$

$$
\begin{array}{ll}
\log _{5} 36+\log _{5} 6 \leftarrow \varsigma & \log _{5} 36+\log _{5} 9 \\
\log _{5}(36 \times 6) & \log _{5}(36 \underset{X}{ } 9) \\
\log _{5} 324 & \log _{5} 4
\end{array}
$$

$$
y=\log _{5} 36+\log _{5} 3^{2}
$$

$$
y=\log _{5} 36+\log _{5} 9
$$

$$
y=\log _{5}(36 \cdot 9)
$$

$$
y=\log _{5} 324
$$

$$
\begin{aligned}
& y=\frac{\log 324}{\log 5} \\
& y=3.592
\end{aligned}
$$

$$
\begin{aligned}
& \log _{5} 40-3 \log _{5} 2 \\
& y=\log _{5} 40-\log _{5} 2^{3} \quad 5^{Y}=5^{1} \\
& y=\log _{5} 40-\log _{5} 8 \\
& y=\log _{5}\left(\frac{40}{8}\right) \\
& y=\log _{5}(5)
\end{aligned}
$$

Example 3:

In Summary

Key Ideas

- The laws of logarithms are directly related to the exponent laws, since logarithms are exponents.
- The laws of logarithms can be used to simplify logarithmic expressions if all the terms have the same base.

Need to Know

- The laws of logarithms can be expressed as follows, where $b, m, n>0$ and $b \neq 1$, and b, m, and n are real numbers:
- Product Law of Logarithms: $\log _{b} m n=\log _{b} m+\log _{b} n$

For example: $\log (5 \cdot 200)=\log 5+\log 200$

- Quotient Law of Logarithms: $\log _{b}\left(\frac{m}{n}\right)=\log _{b} m-\log _{b} n$

For example: $\ln \left(\frac{3}{4}\right)=\ln 3-\ln 4$

- Power Law of Logarithms: $\log _{b} m^{n}=n \log _{b} m$

For example: $\log _{2} 5^{3}=3 \log _{2} 5$

Textbook Questions: page 446-447 \#1-7,10,11,13,14,15, 16

