Steps:

- Take the \log (base 10) of each side of the equation.
- Use the power law to bring the exponents down.
- If the exponent has more than one term, use the distributive property.
- Group and combine like terms to solve the equation.

Example 1:
Solve for the variable.
(A)

$$
\begin{aligned}
& \sqrt{\log 3^{(x-1)}=\log 20} \\
& \frac{(x-1) \log 3}{\log 3}=\frac{\log 20}{\log 3}
\end{aligned}
$$

$$
\begin{aligned}
& x-1=\frac{\log 20}{\log 3} \\
& x-1=2.7268 \\
& x=2.7268+1 \\
& x=3.7268
\end{aligned}
$$

(B)

$$
\begin{aligned}
& \log 2^{x}=\log 3^{2^{x}=3^{x}} \\
& x \log 2=x \log 3 \\
& x \log 2-x \log 3=0 \\
& \frac{x(\log 2-\log 3)}{(\log 2-\log 3)} \log 2-\log 3
\end{aligned}
$$

$$
\begin{aligned}
& \text { (c) } 7 \text { Public } \\
& \log 2^{(x-1)}=\log 3^{(x+i)^{2 x-1}=3^{x+1}} \\
& \begin{array}{l}
x-2 \log 2=(x+i) \log 3 \\
x \log 2-\log 2=x \log 3+\log 3 \\
x \log 2-x \log 3=\log 3+\log 2 \\
x(\log 2-\log 3)=\log 3+\log 2
\end{array}
\end{aligned}
$$

(D)

$$
\begin{aligned}
& \frac{4\left(3^{2 x}\right)}{4}=\frac{24}{4} \\
& 3^{2 x}=6 \\
& \log 3^{2 x}=\log 6 \\
& \frac{2 x \log 3}{\log 3}=\frac{\log 6}{\log 3}
\end{aligned} \quad\left[\begin{array}{l}
\frac{2 x}{2}=\frac{1.6309}{2} \\
x=0.8155 \\
x^{2 x}=24 \\
3^{2 x}=6 n \\
b^{e}=\text { or } \\
\frac{\log 36}{\log 6}=2 x
\end{array} \quad \begin{array}{l}
\frac{2 x}{2}=\frac{1.6309}{2} \\
x=0.8155
\end{array}\right.
$$

Solving Log Equations Using a Calculator

Recall the examples we did when we evaluated a logarithm by changing to exponential form:

This strategy works fine when we can get a common base, but is not useful in cases in which we cannot get a common base. In these cases however, we can evaluate the logarithm using a calculator. The change of base rule has already been introduced. This rule is not provided on the final exam.

$$
\log _{b} n=\frac{\log n}{\log b}
$$

Example 2:

(A)

$$
\begin{aligned}
& y=\frac{\log _{2} 9}{\log 2} \\
& y=\frac{\log 9}{} \\
& y=3.1699
\end{aligned}
$$

(B)

$$
\begin{aligned}
& y=\log 0.1 \\
& y=\frac{\log 0.1}{\log \frac{1}{2}} 2 \\
& y=3.322
\end{aligned}
$$

Textbook Questions: page 455-457 \#1, 2, 3, 5, 6, 15, 16

