Part I: Multiple Choice. Choose the correct answer.

1. Given $4^{x}=9$, which best approximates x ?
(A) 0.35
(B) 1.17
(IC) 1.58
(D) 2.25
2. Solve: $2^{x}+1=4 \quad 2^{x}=4-1$
(A) 0.176
(B) 0.631
(D) $\begin{array}{ll}1.585 & 2^{6.555}=3.00007 \\ \text { (D) } \\ 1.500\end{array}$
3. Evaluate: $\log _{7} 13=\frac{\log 13}{\log 7}$
$\begin{array}{ll}\text { (A) } 0.76 \\ \text { (B) } 1.19 & =1.22\end{array}$
(C) 1.32

$$
=1.32
$$

(D) 1.86
4. Evaluate: $\log _{4} 10=\log 10$
(A) 0.60
(B) 1.66
(C) 1.78

$$
\begin{aligned}
& 10 \int 4 \\
= & 1.66
\end{aligned}
$$

(D) 2.50
5. Given $5^{e}=12$, which best approximates x ?
(A) 0.65

Another method:
(B) 1.23
(C) 1.46
(D) 1.54

$$
\begin{aligned}
& \log _{5} 12=x \\
& \frac{\log 12}{\log 5}=x \\
& x=1.54
\end{aligned}
$$

6. Given $2(7)^{x}=40$, which best approximates x ?

$$
\begin{array}{ll}
\begin{array}{ll}
\frac{2(7)^{x}=\frac{40}{2}}{2} & \log 7^{x}=\log 20 \\
7^{x}=20 & x \log 7=\log 20 \\
& x=\frac{\log 20}{\log 7} \\
& x=1.54
\end{array}
\end{array}
$$

(A) 0.46
(B) 0.65
(D) 1.90
7. Given $7^{x}=14$, which best approximates x ?
(A) 1.15
(B) 1.36
(D) 7

$$
\begin{aligned}
& \begin{array}{l}
\text { 4, which best approximates } x ? \\
\log 7 x=\log 14 \\
x \log 7
\end{array} \quad \rightarrow x=\frac{\log 14}{\log 7} 14 \\
& x=1.36
\end{aligned}
$$

8. Given $8^{x}=15$, which best approximates x ?
$\begin{array}{lll}\text { (A) } & 0.27 & \log \delta^{X}=\log 15 \\ \text { (B) } & 0.77 & \\ \text { (C) } & 1.22 & x \log 8=\log 15\end{array} \quad x=\frac{\log 15}{\log 8}$
(C) 1.22

$$
x=1.30
$$

9. Given $2(5)^{x}=30$, what is the approximate value of x ?
$\begin{array}{ll}\text { (A) } & 0.5 \\ \text { (B) } & 1.5 \\ 2 & 2(5)^{x} \\ 2 & \frac{30}{2}\end{array}$
(C) 1.7
(D) 3.0
10. Solve: $3^{x+1}=5 . \quad \sqrt{\log 3^{x+1}}=\log 5$

$$
\begin{aligned}
& \log _{5} 15=x \\
& \frac{\log _{5} 15}{\log 5}=x \\
& x=1.7
\end{aligned}
$$

$\begin{array}{ll}\text { (A) } \frac{\log 3}{\log 5}-1 \\ \text { (B) } \frac{(x+1) \log 3}{\log 5}+1 & \frac{\log 5}{\log 3} \\ \log 3\end{array}$
(C) $\frac{\log 5}{\log 3}-1$
(D) $\frac{\log 5}{\log 3}+1$

$$
x+1=\frac{\log 5}{\log 3}
$$

$$
x=\frac{\log 5}{\log 3}-1
$$

11. Given $7^{x}+5=25$, what is the approximate value of x ?
(A) $0.83 \quad 7^{x}=25-5$
(B) 1.30
(C) 1.54
(D) 1.75

$$
\begin{array}{ll}
7^{x}=25-5 & x=\frac{\log 20}{\log 7} \\
7^{x}=20 & x=1.54 \\
\log _{7} 20=x &
\end{array}
$$

Part II: \quad Constructed Response. Answer each question in the space provided. Show all workings.
12. Solve for x :

$$
\begin{aligned}
& \text { (A) } 6^{x-6}=3^{x+1}
\end{aligned}
$$

$$
\begin{aligned}
& (x-6) \log 6=(x+6) \log 3 \\
& \rightarrow \frac{0.3010 x}{0.3010}=\frac{5.1460}{0.3010} \\
& x \log 6-6 \log 6=x \log 3+\log 3 \\
& x \log 6-x \log 3=\log 3+6 \log 6 \\
& x(\log 6-\log 3)=\log 3+6 \log 6 \\
& \text { (B) } 10^{x+1}=5^{x-1}
\end{aligned}
$$

(C) $2^{2 x-1}=5^{x+1}$
(D) $3^{x+1}=5^{x-1}$
(E) $2^{x+3}=3^{2 x-1}$
(F) $2^{x+1}-3^{x-1}=0$
13. What annual interest rate (compounded annually) is necessary for $\$ 8500$ to grow

$$
\begin{array}{cc}
\begin{array}{c}
\text { to } \$ 9000 \text { in } 3 \text { years? } \\
A=P(1+i)^{n} \\
\frac{9000}{8500}=\frac{8500(1+i)^{3}}{8500} \\
1.0588=(1+i)^{3} \\
\sqrt[3]{1.0588}=x^{2} \\
(1+i)^{7}
\end{array}
\end{array} \quad \begin{gathered}
1.019=1+i \\
1.019-1=i \\
i=0.019 \\
0 r \\
1.9 \%
\end{gathered}
$$

14. An investment broker promises to give you an 18% return on your money. If you invest $\$ 850$, and your investment is compounded annually, how many years will it take for your investment to be worth $\$ 7310$?

$$
\begin{aligned}
& P=850 \\
& A=7310 \\
& i=0.18=0.18 \\
& \begin{aligned}
\frac{7310=}{850}=\frac{850(1.18)}{850} \\
8.6=1.18^{n} \\
\log ^{n} 8.6=\log 1.18^{n} \\
\log 8.6=n \log .18
\end{aligned} \quad n=\frac{\log 8.6}{\log 1.18} \\
& \begin{aligned}
\frac{7310=}{850}=\frac{850(1.18)}{850} \\
8.6=1.18^{n} \\
\log ^{n} 8.6=\log 1.18^{n} \\
\log 8.6=n \log .18
\end{aligned} \quad n=\frac{\log 8.6}{\log 1.18}
\end{aligned}
$$

16. Suppose there are 25 coyotes in one area of NL right now. If this population is known to triple every 4 years, how long will it take for the population to reach 258 animals?

17. The half-life of a certain drug in the bloodstream is 6 days. If a patient is given 480 mg , algebraically determine how long it will take for the amount of drug in the patient's body to reduce to 15 mg .
18. Technetium-99, a radioactive isotope used in nuclear medicine, has a half-life of 6 hours. Set up an equation, and use it to determine how long it would take for 500 micrograms of Technetium- 99 to reduce to 100 micrograms.
19. If the number of daisies in a field increases by 30% every 2 years, how long will it take for a population of 20 daisies to grow to 600 daisies?
20. Tom bought a car for $\$ 14000$. The value of the car depreciates at a rate of 21% every two years. Write an equation that models the value of the car over time and use it to determine the approximate value of the car after five years.
21. A radioactive isotope has a half-life of 125 years. How long does it take for an initial amount of 200 mg to decay to 120 mg ?
22. A laboratory assistant decided to observe the reproductive properties of a new strain of bacteria. The assistant started observing a population of 300 bacteria and noted that the bacteria population doubled every 5 minutes. Write a function to model this situation and use it to determine the time it will take for the population to reach 18000 bacteria.

