8.2 Exploring Graphs of Periodic Functions

Graphs of Sinusoidal Functions

Many cycles/patterns exist in the world around us such as those in fabric prints, flooring and computer graphic designs.

When working with functions, if a pattern repeats regularly over some interval of the domain, then the function is periodic. A ferris wheel demonstrates periodic behavior since it completes one rotation every t minutes.

If we graph the sine and cosine functions, they will display periodic behavior. Before we start graphing sinusoidal functions, there is some terminology that we must be familiar with.

Periodic Function: a function whose graph repeats in a regular intervals or cycles.
Midline: the horizontal line halfway between the maximum and the minimum values of a periodic function.

Amplitude: the distance from the midline to either the maximum or minimum of a periodic function; the amplitude is always expressed as a positive number.

Period: the length of the interval of the domain to complete one cycle.

The Sine Function
Complete the following table of values for $y=\sin x$.

x	0°	90°	180°	270°	360°	450°	540°	630°	720°
y	\bigcirc	1	0	-1	\square	1	\bigcirc	-1	\bigcirc

Graph the data on the grid provided:

Questions $y=\sin x$

1. What is the y-intercept or starting point?

2. What are the x-intercepts?

3. What is the maximum value?

$$
y=1
$$

4. What is the minimum value?

$$
y=-1
$$

5. At what values of θ are there maximum values?

$$
90^{0}, 450^{\circ}
$$

6. At what values of θ are there minimum values?

$$
270^{\circ}, 630^{\circ}
$$

7. Is the graph periodic?
yes. (repects)
8. What is the period of the graph?

$$
360^{\circ}
$$

9. What is the amplitude of the graph?
\square
10. What is the equation of the midline?

$$
y=0
$$

The Cosine Function
Complete the following table of values for $y=\cos x$.

x	0°	90°	180°	270°	360°	450°	540°	630°	720°
y	1	0	-1	0	1	0	-1	0	1

Graph the data on the grid provided:

Questions $y=\cos x$:

1. What is the y-intercept or starting point?

$$
V=1 \quad\left(0^{0}, 1\right)
$$

2. What are the x-intercepts?

$$
90^{\circ}, 2700,450^{0} 630^{\circ}
$$

3. What is the maximum value?

$$
y=1
$$

4. What is the minimum value?

$$
V=-1
$$

5. At what values of θ are there maximum values?

$$
0^{0}, 360^{\circ}, 720^{\circ}
$$

6. At what values of θ are there minimum values?

$$
180^{0}, 540
$$

7. Is the graph periodic?

$$
y e S
$$

8. What is the period of the graph?

$$
360^{\circ}
$$

9. What is the amplitude of the graph?

10 . What is the equation of the midline?

$$
y=0
$$

Comparing the Sine and Cosine Functions

How are the graphs of the sine and cosine functions similar?

$$
\begin{aligned}
& \text { Sane period, amplitude, maximum, minimum, } \\
& \text { midline. }
\end{aligned}
$$

How are the graphs of the sine and cosine functions different?
shifted hovizantilly to the lift (negative) by 90°.

Look specifically at the graph of $y=\sin x$. Identify 5 key points that could enable us to sketch the graph even if we didn't know anything else other than these 5 points.

In Summary

Key Ideas

- The function $y=\sin x$ is a periodic function.

- The function $y=\cos x$ is a periodic function.

- The graphs of $y=\sin x$ and $y=\cos x$ have the following common characteristics:
- multiple x-intercepts
- one y-intercept
- a domain of $\{x \mid x \in R\}$
- a range of $\{y \mid-1 \leq y \leq 1, y \in R\}$
- an amplitude of 1
- a period of 360° or 2π
- a midline defined by the equation $y=0$

Need to Know

- The graphs of $y=\sin x$ and $y=\cos x$ are congruent curves.

- The midline of the curves, $y=0$, is the horizontal line halfway between the maximum and minimum values. The two graphs oscillate about this line.
- The period of a graph is the length of one complete cycle.

