2 sinusoidal functions
(1) $y=a \sin b(x-c)+d$
(2) $y=a \cosh (x-c)+d$
a: amplitude
b: period $=\frac{360^{\circ}}{b}$
d : midline $y=d$
C:
For \sin

For cosine

$C=x$-value of the first point on the midline where graph is moving up.
$c=x$-valve of first max point.

Matching Sinusoidal Equations with Graphs
Example 1:
Match the following equations with the corresponding graphs.

b)

Graph 2

$$
b=\frac{360^{\circ}}{360^{\circ}}=1
$$

(iii) $y=4 \sin \underline{3}\left(x-\underline{60^{\circ}}\right)+\underline{1}$

$$
\begin{aligned}
& \text { period }=\frac{360^{\circ}}{b} \\
& b=\frac{360^{\circ}}{\text { period }} \\
& b=\frac{360^{\circ}}{120^{\circ}}=3
\end{aligned}
$$

Textbook Questions: page 529 \#13, 14

Applications of Sinusoidal Functions

Example 2:

A company is experimenting with a new type of windmill. The graph below shows the path of a blade on the original windmill over time. Ask students to describe what has changed and whathas stayed the same in the new models. (Note: The scale is the same on

(A)

(B)

(D)

Example 3:

The following graph represents the rise and fall of sea level in part of the Bay of Fundy, where t is the time, in hours, and $h(t)$ represents the height relative to the mean sea level:

(A) What is the range of the tide levels?

Range: $\{y \mid-6.5 \leq y \leq 6.5, y \in R\}$
(B) What does the equation of the midline represent in the graph?
$V=0 \quad H_{2} l f$ tide.
(C) What is the period of the graph?

$$
12 \text { hours }
$$

(D) The equation of the sinusoidal function is represented by $h(t)=6.5 \sin \frac{\pi}{6} t$. Calculate the period from the equation and compare it to your answer in (盖) ((C^{6})

$$
\text { Period }=\frac{2 \pi}{b}=\frac{2 \pi}{\frac{\pi}{b}}=2 x \cdot \frac{b}{x}=12
$$

Example 4:

$$
\text { Some as }{ }^{6}(c) \text {. }
$$

The temperature of an air-conditioned home on a hot day can be modelled using the function $t(x)=1.5\left(\cos 15^{\circ} x\right)+20$, where x is the time in minutes after the air conditioner turns on and $t(x)$ is the temperature in degrees Celsius. Ask students to answer the following:
(A) What are the maximum and minimum temperatures in the home?

$$
\begin{array}{ll}
a=1.5 & \text { max }=d+a=20+1.5=21.5^{\circ} \mathrm{C} \\
d=20 & \text { min }=d-a=20-1.5=18.5^{\circ} \mathrm{C}
\end{array}
$$

(B) What is the temperature 10 minutes after the air conditioner has been turned on?

$$
\begin{aligned}
& x=10 \\
& t(x)=1.5[\cos 5(10)]+20 \\
& f(x)=18.7^{\circ} \mathrm{C}
\end{aligned}
$$

(C) What is the period of the function? How would you interpret this value in this context?

$$
\text { period }=\frac{360^{\circ}}{6}=\frac{340^{\circ}}{15^{\circ}}=24 \text { minutes }
$$

$$
\text { It takes } 24 \text { minutes for the house to }
$$

cool down and warn back up again.

Example 5:
Ashley created the following graph for the equation $y=3 \sin ^{1}\left(x-90^{\circ}\right)+2$ as shown below.

Identify the error Ashley made and then construct the correct graph.

- midline
- graph is inverted
*Public
 the finction in temsor sinine and osise:

$$
\text { midre }=\frac{6+2}{2}=4
$$

$a: 2$
b: 3
c: $\sin 30^{\circ}$
d: 4^{60}

$$
b=\frac{360^{\circ}}{\text { period }}=\frac{360^{\circ}}{120}=3
$$

$$
\begin{aligned}
& y=\operatorname{asn} b(x-c)+d \\
& o n \\
& y=a \cos b(x-c)+d \\
& y=2 \sin 3\left(x-30^{\circ}\right)+4 \\
& y=2 \cos 3\left(x-60^{\circ}\right)+4
\end{aligned}
$$

Example 7:
Consider the following graph:

(A) Identify the midline, amplitude, period and range of the graph.
midline: $y=0$

$$
\text { period }=360^{\circ}
$$

amplitude: 2

$$
R_{\text {ene: }}\{y \mid-2 \leq y \leq 2, y \in R\}
$$

(B) Identify the a, b, c, and d values of this equation if it is a sine function. and cos ane.

$$
\begin{array}{ll}
a=2 & C: \sin 90^{\circ} \\
b=\frac{360^{\circ}}{360^{\circ}} & d=0
\end{array}
$$

(C) What is the equation of the sinusoidal function in terms of sine and cosine?

$$
\begin{aligned}
& y=2 \sin \left(x-90^{\circ}\right) \\
& y=2 \cos \left(x-180^{\circ}\right)
\end{aligned}
$$

Example 8:

A graphing calculator is used to carry out a sinusoidal regression on a set of data, and the following information is obtained.

(A) Write the sinusoidal equation for the function. Hint: follow the format of the equation given in the box - it's slightly different than the format we normallyuse.

$$
y=10.5 \sin (-0.7 x-3.6)+20.5
$$

(B) Determine the value of y when $x=10$.

(C) Determine the maximum and minimum values of the function.

$$
\begin{aligned}
& \text { max: }^{d+a}=20.5+10.5=31.0 \\
& M_{\text {in }}: d-a=20.5-10.5=10.0
\end{aligned}
$$

