1. On a forward somersault , Greg's height above the water is given by $h=-5 t^{2}+6 t+3$, where t is time in seconds and h is height in meters.
(A) Find Greg's maximum height above the water.

$$
K=-5(0.6)^{2}+6(0.6)+3=4.8 \mathrm{~m}
$$

(B) How long does it take him to reach that maximum height?

$$
h=-\frac{b}{2 a}=-\frac{6}{2(-5)}=\frac{-6}{-10}=0.65
$$

(C) How high is the diving board?

(D) What is his height after 1.5 seconds?

$$
h(1.5)=-5(1.5)^{2}+6(1.5)+3=0.75 n
$$

2. The power P watts supplied to a circuit by a 9 volt battery is given by the formula $P=9 I-0.5 I^{2}$ where $\underline{I \text { is the current in amperes. } \quad D=-0.5 T^{2}+q I .150}$
(A) For what value of the current will the power be a maximum?

$$
h=\frac{-b}{2 a}=\frac{-9}{2(-0.5)}=9 \text { app }
$$

(B)What is the maximum power?

$$
k=9(9)-0.5(9)^{2}=40.5 \text { watts. }
$$

3. A rectangular lot is bounded on one side by a river and on the other three sides by 80 m of fencing. Find the dimensions that will enclose the maximum area.

$$
\begin{array}{ll}
l+2 w=80 \\
A=l \cdot w & \\
l=-2 w+80 & w=20 m \\
A=(-2 w+80) w & l=-2(20)+80=40 m \\
A=-2 w^{2}+80 w & A=-2(20)^{2}+80(20)=800 m^{2} \\
h=\frac{-b}{2 a}=\frac{-80}{2(-2)}=20
\end{array}
$$

4. A lifeguard marks off a rectangular swimming area at a beach with 200 m of rope.

What is the greatest area she can enclose?

$$
\begin{aligned}
& l+2 \omega=200 \\
& A=l \cdot \omega \\
& l=-2 \omega+200 \\
& A=(-2 \omega+200) \omega \\
& \omega=50 \mathrm{~m} \\
& l=-2(50)+200=100 \mathrm{~m} \\
& A=-2 \omega^{2}+200 \omega \quad A=-2(50)^{2}+200(50)=5000 m^{2} \\
& h=\frac{-b}{2 e}=\frac{-200}{2(-2)}=50 \\
& \text { on } \\
& A=l \cdot \omega=(50)(100)=5000 \mathrm{~m} 2
\end{aligned}
$$

5. 80 m of fencing are available to enclose a rectangular play area. What dimensions will yield the maximum area? What is the maximum area?

$$
\begin{array}{ll}
2 l+2 \omega=80 & h=\frac{-b}{2 a}=\frac{-40}{2(-1)}=20 \omega \\
A=l \cdot \frac{l}{2}=\frac{l}{2 l+8} & l=20 w \\
\omega=-l+40 & \omega=-20+40=20 w \\
A=l(-l+40) & \left.A=-(20)^{2}+401 l\right)=400 m^{2} \\
A=-l^{2}+40 l & A=l \cdot \omega=(20)(20)=400 m^{2}
\end{array}
$$

6. A producer of synfuel from coal estimates that the cost C dollars per barrel for a production run of x thousand barrels is given by $C=9 x^{2}-180 x+940$. How many thousand barrels should be produced each run to keep the cost per barrel at a minimum? What is the minimum cost per barrel of synfuel?

$$
h=\frac{-h}{2 a}=\frac{-(-180)}{2(9)}=\frac{180}{18}=10
$$

$$
\therefore \text { ID ODO barrels }
$$

$$
k=9(10)^{2}-180(10)+940=40
$$

$\$ 40 /$ barrel

